HE P LKF

The Chinese University of Hong Kong

CSCI2510 Computer Organization
Lecture 10: Pipelining

Ming-Chang YANG
mcyang@cse.cuhk.edu.hk

S P
\ Mmoo
sy ST i :1 TR &7 wEE
i { ol o A 3
s R0 k B PR _
N | | .
— \y '1 J h S T L
: wil U e SRR I L v e
» Wl § -
s
o
Al)

mailto:mcyang@cse.cuhk.edu.hk

Why Pipelining?

* Real-life Example: Four loads of laundry that need

to be washed (5 (for 30 minutes), dried g (for 40
minutes), and folded &; (for 20 minutes).

5|PM 7 8 9 10 11 Midnight BIPM f 8 9 10 11 Midnight
30" 20 ‘E‘sn':m |E|3n 203830 40 20 2020 5 40 <0 50 '@
® ey B etk
Shr_ & ek
© Jo% __ & G8k
1@ f(:) ? v@ g':' ?
Without Pipelining With Pipelining
(30 +40+ 20) x4 304+40=«4+ 20
= 360 minutes In total = 210 minutes In total

https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/pipelining/index.html

CSCI2510 Lec10: Pipelining 2023-24 T1

Outline

* Pipelining iIn RISC-Style Processor
— Pipeline Organization
— Pipeline Stall: Hazards
1) Data Dependencies
2) Memory Delays
3) Branch Delays
4) Resource Limitations

* Pipelining in CISC-Style Processor

CSCI2510 Lec10: Pipelining 2023-24 T1

Recall: Five-Stage Organization (RISC)

* The execution can be =1 o 1L[Ador =2
. . : Gen.
arranged into five stages: Register | —T— L—
. : ‘reg. % 1 IR
@ Fetch an instruction and (RgRy) o 3| Comra
increment the PC. £| L Circuitry

\ AT

control signals

@ Decode the instruction &
read the source registers. RE

MuxB '
® Perform an ALU \;|—/
operation. ‘nA NS Iry

@ Read/write memory data.

® Write into the dest. req.

]_lj -
B #

v RB

Instr. Src. | ALU |- Mem. | | Dest. RZy 3y PC

Fetch Reg. R/W Reg. \ MUxMA /
- A 4 A 4 E

Fetch Execution MDR || MAR Q

CSCI2510 Lec10: Pipelining 2023-24 T1

Pipelined Five-Stage Organization (1/2)

* The five-stage organization can allow instructions
to be fetched and executed in a pipelined way easily.
— The five stages are labeled as: F, D, C, M, and W.
— At any time, each stage is working for a different instruction.

— Ideally, instructions are done at the rate of one per cycle.

* Note: The time needed to perform any instruction is not changed:
Any one instruction still takes (at least) five cycles to complete.

Clock
1 2 3 4 s ' e o7
Cycle I I I
] I I
I, ‘ Fetch ‘Decode ‘Compute‘ Memory‘ Write ‘ ' '
! I I
I
I ‘ Fetch ‘ Decode ‘Compute‘ Memory | Write I
I
| P ‘ Fetch ‘ Decode ‘Compute‘ Memory ‘ Write ‘
5

CSCI2510 Lec10: Pipelining 2023-24 T1

Pipelined Five-Stage Organization (2/2)

* Inter-stage buffers carry the
Info. from one stage to the next.

— B1 feeds Decode stage with the
newly-fetched instruction.

— B2 feeds Compute stage with:
« Two operands read from Register File;
» The src./dest. register identifiers;
« The immediate value from the instruction;
* The control signals (which move though
the entire pipeline via B2, B3, and B4).
— B3 holds the computed result or the
data to be written to the memory.

— B4 feeds Write stage with the value
to be written into Register File.

— Note: B1~B4 include the inter-stage
registers (i.e., RA/RB/RZ/RM/RY).

Instruction

Fetch

(e iage suier 1]

,| Register

File

Compute

Write

Datapath

o—>

Instruction
Decode

Reg. identifiers Control signals for

(operands & results) and other info.

stages

Class Exercise 10.1

« During the clock cycle 5, what
IS the information held by the
Inter-stage buffers (i.e., B1 to
B4), respectively?

Cycle 1 2 3 4 5 6 7 8 9

o |Ffofc]mfw]

Instruction
Fetch

(e iage suier 1]

Register
* -
File

Compute
Lo [Flofcfw]w]
L LFlofc]m]w]
L LFfofcfw]w]
I ‘F‘D‘C‘M‘W‘—wme
Datapath

CSCI2510 Lec10: Pipelining 2023-24 T1

o—>

Instruction
Decode

Reg. identifiers Control signals for

(operands & results) and other info.

stages

Outline

* Pipelining iIn RISC-Style Processor

— Pipeline Stall: Hazards
1) Data Dependencies
2) Memory Delays
3) Branch Delays
4) Resource Limitations

CSCI2510 Lec10: Pipelining 2023-24 T1 9

Reality: The Pipeline May Stall

* If any pipeline stage requires more than 1 clock cycle,
other stages must wait, causing the pipeline to stall.

7 8 9 10

M (cache miss)

O]

Cycle 1 2 3 4 5 6
y [Flolc wm]w]
[F [o]
L., | F | o
i

|0 771 c | |w]

« Hazards: Conditions that cause the pipeline to stall.
— It might arise from ® data dependencies, @ memory delays,

® branch delays, and @ resource limitations.

CSCI2510 Lec10: Pipelining 2023-24 T1

10

1) Data Dependencies

* Pipeline may stall because of data dependencies.

« Consider the following two instructions:
Add R2, R3, #50
Sub R9, R2, #30

— There is a data dependency since R2 carries data from the
first instruction to the second.
« They must be performed in order to ensure the data consistency.

— The Decode is stalled for three cycles to delay reading R2
until cycle 6 by then the new value becomes available.

Cycle 1 2 3 4 5 6 7 8 9

o [F 1o]c]m]w]

: T [w]

CSCI2510 Lec10: Pipelining 2023-24 T1 11

Hardware Sol.: Operand Forwarding i

oAl = & T

- Operand forwarding can Cycle 1 2 3 4 5 O
alleviate the pipeline stalls due Add [F [D |Cq| M| W
to data dependencies. <ub Tolclulw
* Consider the following two ~ --------2z-----oo-omoo-o -
instructions again; Register =
File
Add R2, R3, #50 (RoRoa)

#immediate value

Sub R9, R2, #30
— The new value of R2 is actually j ?
available at the end of cycle 3. | . L —
— Rather than stalling Sub, the \ MuxA / \ MuxB /
hardware can forward the value to
where it is needed in cycle 4. A AL Iry

— Additional hardware is needed to
make such forwarding possible.

Class Exercise 10.2

« Consider the following instructions:
Add R2, R3, #100
Or R4, R5, R6
Sub R9, R2, #30
 How many clock cycles are required to complete the
execution when the operand forwarding technigue is
not used or used, respectively?
— Note: The minimal number of cycles should be derived.

CSCI2510 Lec10: Pipelining 2023-24 T1 13

Software Sol.: NOP Instruction

* The compiler can also identify the data dependency
and insert NOP (No-operation) instructions to create
Idle clock cycles (also called bubbles).

— Pros: simplified hardware
— Cons: larger code size, “non-reducing” total execution time

Cycle 1 2 3 4 S 6 ! 8 7
Add ‘ F ‘ D C M ‘ Wi ‘

NOP %%% %% %% %%

Sub
CSCI2510 Lec10: Pipelining 2023-24 T1 16

Software Sol.: Instruction Reordering %

« The compiler can further move “useful instructions”
Into the NOP slots by instruction reordering.

— It must carefully consider data dependencies still.

"I

— It can possibly improve performance and reduce code size.

« Depending on the extent to which NOP slots can be usefully filled.

Ij+1

Cycle 1 2 3 4 5 6 7 8 9
Add ‘ F ‘ D ‘ C M| W,
I, ‘ F ‘ D C M | w

1

@)

j+2

Sub
CSCI2510 Lec10: Pipelining 2023-24 T1

DR2

F‘D‘C‘M‘W

2) Memory Delays

« Delays arising from memory accesses are another
cause of pipeline stalls.

— E.g., a Load instruction may require more than one cycle to
obtain its operand from memory due to cache miss, which
causes all subsequent instructions to be delayed.

« Note: A memory access may take more than ten cycles, but the
figure shows only three cycles for simplicity.

Cycle 1 2 3 4 5 6 7 8 9

M (cache miss)
joa ‘F‘D‘CWM‘W‘
Ly (c 1oV cv]w]

— Question: How can we alleviate such pipeline stalls?
CSCI2510 Lec10: Pipelining 2023-24 T1 18

Ij:Load‘ F ‘ D ‘ C

3) Branch Delays

 Branch instructions may also stall the pipeline.

— They must first be decoded or executed to determine
whether and where to branch.

— Branch Penalty: The delays caused by a branch instruction.
* It can be reduced by computing the branch target earlier.

Cyce 1 2 3 4 5 6 7 8 1iCycle 1 2 3 4 5 6 7 8

o LElelel o
(may be discarded) i (may be discarded)
(may be discarded) i I, | F | D | C | M |W|
I, b;ir;fth F | D | C | M |W |i branch penalty
P yl i
The branch target is computed in C. i The branch target is computed in D.

Branch penalty: 2 clock cycles Branch penalty: 1 clock cycle
CSCI2510 Lec10: Pipelining 2023-24 T1 (The hardware must be modified.) 19

Recall: Branch Address o

PC enable
® MAR € [PC], Read memory, CRY —— [Addr. | PiC
: IR | E
Wait MFC, IR < [MDR], Register e L
PC < [PC] + 4 (shown here) File [t L
NN NN NS NN NN SN NN NN EEEN NN EEEENEEEEEEEEEEEEEEEEEEE : R~R i ddr. S
: @ Decode instruction - ST || E gont.rto'
- E 5 Ircuitry
:® PC € [PC] + branch offset| _&— — & Y s
: e The branch offset is from IR. R RIE
* MuxINC (in Instruction Address ': RE ¥ y
Generator) is set to select offset. :] MuxB
ll 1 RA
‘nA A\L/u Iry
\ 4 VVRB
p————— oo ~ v
E PC enable 4 'Fr‘om IR E T
E L i INC_sel E RZ) MDR RZ PC
S =\ MuxINe / \ MuxY / \ MuxMA /
] > ~ Instruction : . E -
\ Adder / Address RY MDR [| MAR %EJ
: | Generator :

Solution: Delayed Branching

* The location(s) that follows a branch instruction is
called the branch delay slot(s).

— Key Observation: The instruction(s) in the delay slot(s)
IS always executed whether or not the branch is taken.

« Delayed Branching: The compiler may find a
“suitable instruction(s)” to fill the delay slot(s).

— One needed to be executed even when the branch is taken.

Add R7, R8, RS I,: Branch TARGET
I,: Branch TARGET Add R7, R8, RS9
I,,,; (always executed) I

TARGET I, TARGET I,

(a) Original sequence of instructions (b) Placing the Add instruction in the
CSCI2510 Lec10: Pipelining 2023-24 T1 branch delay slot 21

Class Exercise 10.3

« Suppose a pipelined processor has two branch delay
slots but does not employ the delayed branch.

* If 20 percent of the instructions executed are branch
Instructions, what is the required number of clock
cycles to complete 100 instructions?

CSCI2510 Lec10: Pipelining 2023-24 T1 22

4) Resource Limitations (1/2)

* The pipeline stalls when there are insufficient
hardware resources to allow concurrent execution.

— If two Instructions need to access the same resource in the
same clock cycle, one instruction must be stalled.

— Case 1: One instruction is accessing memory during the M

stage, while another is being fetched.
« Possible Solution: Separating instruction & data caches.

— Case 2: Two instructions require access to Register File at

the same time.
« Possible Solution: Equipping Register File with more
Input and output ports.
* |n general, this can be prevented by providing

additional hardware resources ($$9%).

CSCI2510 Lec10: Pipelining 2023-24 T1 24

4) Resource Limitations (2/2)

Time (in clock cycles) -

Bl @ eg2 ¢ 668 ¢ tEAd 1 cos 1 ©oE 1 l6ed : ccs

Load Mem _"EE : Reg :
Instruction 1 Mem Req i :

Instruction 2 i | Mem 5 Reg ; / Mem [—*— Reg i
2 < >

Instruction 3

YT s

Instruction 4 Mem

CSCI2510 Lec10: Pipelining 2023-24 T1 25

Outline

* Pipelining in CISC-Style Processor

CSCI2510 Lec10: Pipelining 2023-24 T1 26

Pipelining in CISC-Style Processors?

Complications arise for pipelining in CISC processors:

— Reasons? CISC-style instructions are variable in size, may
have multiple memory operands, and may have more
complex addressing modes.

* Nonetheless, pipelined processors have still been
Implemented for CISC-style instruction sets.

— For example, Core i7 architecture has a 14-stage pipeline.

— To reduce internal complexity, CISC-style instructions are
dynamically converted by the hardware into simpler RISC-
style micro-operations.

« This approach preserves code compatibility while making it possible
to use the aggressive performance enhancement technigues that
have been developed for RISC-style instruction sets.

CSCI2510 Lec10: Pipelining 2023-24 T1 27

Summary

* Pipelining iIn RISC-Style Processor
— Pipeline Organization
— Pipeline Stall: Hazards
1) Data Dependencies
2) Memory Delays
3) Branch Delays
4) Resource Limitations

* Pipelining in CISC-Style Processor

CSCI2510 Lec10: Pipelining 2023-24 T1 28

	投影片 1: CSCI2510 Computer Organization Lecture 10: Pipelining
	投影片 2: Why Pipelining?
	投影片 3: Outline
	投影片 4: Recall: Five-Stage Organization (RISC)
	投影片 5: Pipelined Five-Stage Organization (1/2)
	投影片 6: Pipelined Five-Stage Organization (2/2)
	投影片 7: Class Exercise 10.1
	投影片 9: Outline
	投影片 10: Reality: The Pipeline May Stall
	投影片 11: 1) Data Dependencies
	投影片 12: Hardware Sol.: Operand Forwarding
	投影片 13: Class Exercise 10.2
	投影片 16: Software Sol.: NOP Instruction
	投影片 17: Software Sol.: Instruction Reordering
	投影片 18: 2) Memory Delays
	投影片 19: 3) Branch Delays
	投影片 20: Recall: Branch
	投影片 21: Solution: Delayed Branching
	投影片 22: Class Exercise 10.3
	投影片 24: 4) Resource Limitations (1/2)
	投影片 25: 4) Resource Limitations (2/2)
	投影片 26: Outline
	投影片 27: Pipelining in CISC-Style Processors?
	投影片 28: Summary

